Semi-abelian Categories and Exactness
نویسنده
چکیده
We show that every semi-abelian category, as defined by Palamodov, possesses a maximal exact structure in the sense of Quillen and that the exact structure of a quasi-abelian category is a special case thereof.
منابع مشابه
Characteristic Subobjects in Semi-abelian Categories
We extend to semi-abelian categories the notion of characteristic subobject, which is widely used in group theory and in the theory of Lie algebras. Moreover, we show that many of the classical properties of characteristic subgroups of a group hold in the general semi-abelian context, or in stronger ones.
متن کاملSemi-abelian categories, torsion theories and factorisation systems
Semi-abelian categories [5] provide a suitable axiomatic context to study, among other things, the (co)homology of non-abelian algebraic structures (such as groups, compact groups, crossed modules, commutative rings, and Lie algebras), torsion and radical theories, and commutator theory. In this talk a brief introduction to some elementary properties of these categories will be given, before fo...
متن کاملHomology and homotopy in semi-abelian categories
The theory of abelian categories proved very useful, providing an ax-iomatic framework for homology and cohomology of modules over a ring (in particular, abelian groups) [5]. A similar framework has been lacking for non-abelian (co)homology, the subject of which includes the categories of groups and Lie algebras etc. The point of my thesis is that semi-abelian categories (in the sense of Janeli...
متن کاملBaer Invariants in Semi-abelian Categories Ii: Homology
This article treats the problem of deriving the reflector of a semi-abelian category A onto a Birkhoff subcategory B of A. Basing ourselves on Carrasco, Cegarra and Grandjeán’s homology theory for crossed modules, we establish a connection between our theory of Baer invariants with a generalization—to semi-abelian categories— of Barr and Beck’s cotriple homology theory. This results in a semi-a...
متن کاملSemi-abelian Exact Completions
The theory of protomodular categories provides a simple and general context in which the basic theorems needed in homological algebra of groups, rings, Lie algebras and other non-abelian structures can be proved [2] [3] [4] [5] [6] [7] [9] [20]. An interesting aspect of the theory comes from the fact that there is a natural intrinsic notion of normal monomorphism [4]. Since any internal reflexi...
متن کامل